143 research outputs found

    Asymmetry of resonance Raman profiles in semiconducting single-walled carbon nanotubes at the first excitonic transition

    Get PDF
    Carbon nanotubes are one-dimensional nanoscale systems with strongly pronounced chirality-dependent optical properties with multiple excitonic transitions. We investigate the high-energy G mode of semiconducting single-walled nanotubes of different chiralities at first excitonic transition by applying resonant Raman spectroscopy. The G mode intensity dependence on excitation energy yielded asymmetric resonance Raman profiles similar to ones we reported for the second excitonic transition. We find the scattering efficiency to be strongest at the incoming Raman resonance. Still, the degree of asymmetry is different for the first and second transitions and the first transition profiles provide a narrower line shape due to longer exciton lifetimes. The overall scattering efficiency is up to a factor of 25 times more intense at first excitonic transition, compared to the second transition. The fifth-order perturbation theory, with implemented phonon scattering pathways between excitonic states, excellently reproduced experimental data

    Light emission, light detection and strain sensing with nanocrystalline graphene

    Get PDF
    Graphene is of increasing interest for optoelectronic applications exploiting light detection, light emission and light modulation. Intrinsically light matter interaction in graphene is of a broadband type. However by integrating graphene into optical micro cavities also narrow band light emitters and detectors have been demonstrated. The devices benefit from the transparency, conductivity and processability of the atomically thin material. To this end we explore in this work the feasibility of replacing graphene by nanocrystalline graphene, a material which can be grown on dielectric surfaces without catalyst by graphitization of polymeric films. We have studied the formation of nanocrystalline graphene on various substrates and under different graphitization conditions. The samples were characterized by resistance, optical transmission, Raman, X-ray photoelectron spectroscopy, atomic force microscopy and electron microscopy measurements. The conducting and transparent wafer-scale material with nanometer grain size was also patterned and integrated into devices for studying light-matter interaction. The measurements show that nanocrystalline graphene can be exploited as an incandescent emitter and bolometric detector similar to crystalline graphene. Moreover the material exhibits piezoresistive behavior which makes nanocrystalline graphene interesting for transparent strain sensors

    Principles of carbon nanotube dielectrophoresis

    Get PDF
    Dielectrophoresis (DEP) describes the motion of suspended objects when exposed to an inhomogeneous electric field. It has been successful as a method for parallel and site-selective assembling of nanotubes from a dispersion into a sophisticated device architecture. Researchers have conducted extensive works to understand the DEP of nanotubes in aqueous ionic surfactant solutions. However, only recently, DEP was applied to polymer-wrapped single-walled carbon nanotubes (SWCNTs) in organic solvents due to the availability of ultra-pure SWCNT content. In this paper, the focus is on the difference between the DEP in aqueous and organic solutions. It starts with an introduction into the DEP of carbon nanotubes (CNT-DEP) to provide a comprehensive, in-depth theoretical background before discussing in detail the experimental procedures and conditions. For academic interests, this work focuses on the CNT-DEP deposition scheme, discusses the importance of the electrical double layer, and employs finite element simulations to optimize CNT-DEP deposition condition with respect to the experimental observation. An important outcome is an understanding of why DEP in organic solvents allows for the deposition and alignment of SWCNTs in low-frequency and even static electric fields, and why the response of semiconducting SWCNTs (s-SWCNTs) is strongly enhanced in non-conducting, weakly polarizable media. Strategies to further improve CNT-DEP for s-SWCNT-relevant applications are given as well. Overall, this work should serve as a practical guideline to select the appropriate setting for effective CNT DEP

    Separation of specific single-enantiomer single-wall carbon nanotubes in the large-diameter regime

    Get PDF
    The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∌1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors

    Sensitive Detection of a Gaseous Analyte with Low‐Power Metal–Organic Framework Functionalized Carbon Nanotube Transistors

    Get PDF
    A highly sensitive and low-power sensing platform for detecting ethanol molecules by interfacing high-purity, large-diameter semiconducting carbon nanotube transistors with a metal–organic framework layer is presented. The new devices outperform similar graphene-based metal–organic framework devices by several orders of magnitude in terms of sensitivity and power consumption, and can detect extremely low ethanol concentrations down to sub-ppb levels while consuming only picowatts of power. The exceptional sensor performance results from the nanotube transistor\u27s high on/off ratio and its sensitivity to charges, allowing for ultra-low power consumption. The platform can also compensate for shifts in threshold voltage induced by ambient conditions, making it suitable for use in humid air. This novel concept of MOF/CNTFETs could be customized for detecting various gaseous analytes, leading to a range of ultra-sensitive and ultra-low power sensors

    a Raman scattering study

    Get PDF
    The longitudinal optical phonon of metallic nanotubes shifts by 23 cm−1 to lower energies when the nanotubes are deposited from a solution onto a substrate. The linewidth increases by 13 cm−1. The changes are explained in terms of shifts in the Fermi energy that influence the Kohn anomaly in the longitudinal optical phonon branch in metallic nanotubes. Using in situ electrochemical Raman measurements we show that the Fermi energy is 0.16 eV below its intrinsic value in metallic nanotubes in solution. Our results impact the application of Raman spectroscopy to distinguish between metallic and semiconducting tubes by examining the high-energy mode line shape

    Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers

    Get PDF
    Carbon nanotube field‐effect transistors fabricated on silicon wafers with thermal oxide often suffer from large gate‐voltage hysteresis, induced by charge trapping sites in oxides, surface hydroxyl groups, and the presence of water molecules. Surface functionalization and passivation, as well as vacuum annealing and reduced operating temperature, have shown to diminish or even eliminate hysteresis. Herein, the fabrication of nearly hysteresis‐free transistors on Si/SiO2_{2} by embedding carbon nanotubes and the connecting electrodes in a hexagonal boron nitride (h‐BN) bottom layer and a polytetrafluoroethylene (PTFE) top layer is demonstrated. The conditions at which catalyst‐free synthesis of h‐BN on SiO2_{2}/Si with borazine is obtained, and the subsequent liquid‐phase deposition of PTFE, are discussed. Device transfer curves are measured before and after PTFE deposition. It is found that the hysteresis is reduced after PTFE deposition, but vanishes only after a waiting period of several days. Simultaneously, the on‐state current increases with time. The results give evidence for the absence of trap states in h‐BN/PTFE heterolayers and a high breakthrough field strength in those wafer‐scalable materials

    Tailoring supercurrent confinement in graphene bilayer weak links

    Get PDF
    The Josephson effect is one of the most studied macroscopic quantum phenomena in condensed matter physics and has been an essential part of the quantum technologies development over the last decades. It is already used in many applications such as magnetometry, metrology, quantum computing, detectors or electronic refrigeration. However, developing devices in which the induced superconductivity can be monitored, both spatially and in its magnitude, remains a serious challenge. In this work, we have used local gates to control confinement, amplitude and density profile of the supercurrent induced in one-dimensional nanoscale constrictions, defined in bilayer graphene-hexagonal boron nitride van der Waals heterostructures. The combination of resistance gate maps, out-of-equilibrium transport, magnetic interferometry measurements, analytical and numerical modelling enables us to explore highly tunable superconducting weak links. Our study opens the path way to design more complex superconducting circuits based on this principle such as electronic interferometers or transition-edge sensors
    • 

    corecore